How to Speak a Language without Knowing It

Xing Shi, Kevin Knight ¹ Heng Ji ²

¹Information Sciences Institute Computer Science Department University of Southern California {xingshi, knight}@isi.edu

²Computer Science Department Rensselaer Polytechnic Institute Troy, NY 12180, USA jih@rpi.edu

June 24, 2014

Overview

Evaluation

5 Training

- Phoneme-based model
- Phoneme-phrase-based model
- Word-based model
- Hybrid training/decoding

Experiments 6

• Can people speak a language they don't know ?

Yes, use a phrasebook

Image: Image:

Yes, use a phrasebook

Yes, use a phrasebook

-

(二)、

What if

we want to say something beyond the phrasebook ?

Shi, X., Knight, K. and Ji, H. (USC & RPI)

How to Speak a Language

June 24, 2014 7 / 31

Or, a speech-to-speech translator

from: proto-knowledge.blogspot.com

However, direct Human interactivity is much more fun !

- Easily pronounceable
 - Both input T(S) and output T'(S) are in speaker's language.
- Understandable by listener
 - T'(S) sounds like T(F).
 - T(F) and T(S) has the same meaning.

Demo

谢谢你 Thank you 三可 有

- A collection of 1312 <Chinese, English, Chinglish> phrasebook tuples. ¹
- 1182 for training, 65 for development and 65 for test.

Chinese	已经八点了
English	lt's eight o'clock now
Chinglish	意思埃特额克劳克闹 (yi si ai te e ke lao ke nao)
Chinese	这件衬衫又时髦又便宜
English	this shirt is very stylish and not very expensive
Chinglish	迪思舍特意思危锐思掉利失安的闹特危锐伊克思班西五

¹Dataset at http://www.isi.edu/natural-language/mt/chinglish-data.txtoace

Frequency Rank	Chinese	Chinglish
1	de	si
2	shi	te
3	yi	de
4	ji	yi
5	zhi	fu

Table : Top 5 frequent syllables in Chinese and Chinglish

э

Model: Cascade FSTs

June 24, 2014 17 / 31

3

Model: Cascade FSTs

June 24, 2014 18 / 31

3

- Construct <Epron, Pinyin-split> training pairs.
- Mapping schema: 1-to-1, 1-to-2 and 2-to-1.

- EM to learn parameters in wFST B, e.g. P(g e|g).
- Viterbi alignments:

labeled Epron	Pinyin-split	P(p e)
d	d	0.46
	d e	0.40
	d i	0.06
	S	0.01
ao r	u	0.26
	0	0.13
	ао	0.06
	ou	0.01

Table : Learned translation tables for the phoneme based model

- Alignment using phoneme-based model is fine.
- When decoding test data, choices of target phonemes are context sensitive.

Decoding "grandmother":

g | r | ae n | d | m | ah | dh | er g e | r | an | d e | m u | e | d | e reference Pinyin-split sequence: g e r uan d e m a d e

Phoneme-phrase-based model

• Intuition: model the substitution of longer sequences ².

Viterbi alignment using Phoneme-based model:

Extract phoneme phrase pairs:

$$\begin{array}{l} \mathbf{g} \rightarrow \mathbf{g} \ \mathbf{e} \\ \mathbf{g} \ \mathbf{r} \rightarrow \mathbf{g} \ \mathbf{e} \ \mathbf{r} \\ \cdots \\ \mathbf{r} \rightarrow \mathbf{r} \\ \mathbf{r} \ \mathbf{ae} \ \mathbf{n} \rightarrow \mathbf{r} \ \mathbf{uan} \end{array}$$

²(Koehn et al., 2003)

Shi, X., Knight, K. and Ji, H. (USC & RPI)

June 24, 2014 22 / 31

Word-based Model

- Construct <Eword,Pinyin> training pairs.
- Mapping schema: 1-to-[1,7].
- EM to learn parameters in wFST E, i.e. *P*(nai te|*night*).
- Viterbi alignments:

wake | up wei ke | a pu

• Error happen due to sparsity: "tips" and "ti pu si" only appear once.

accept tips a ke sha pu <mark>te</mark> ti pu si

- Intuition: Combine two models during training phrase.
- Use phoneme-based model to help word-based model:

Shi, X., Knight, K. and Ji, H. (USC & RPI)

Hybrid decoding

• Intuition: Combine two models during decoding phrase.

3

Chinese	等等我
Reference English	wait for me
Reference Chinglish	唯特佛密 (wei te fo mi)
Hybrid Chinglish	位忒佛密 (wei te fo mi)
Human-dictated English	wait for me
ASR English	wait for me
Chinese	年夜饭都要吃些什么
Reference English	what do you have for the Reunion dinner
Reference Chinglish	沃特 杜 又 海夫 佛 则 锐又尼恩 低呢
Hybrid Chinglish	我忒度优 嗨佛佛得瑞优你恩低呢
Human-dictated English	what do you have for the reunion dinner
ASR English	what do you high for 43 Union Cena

Experiments: English-to-Pinyin decoding accuracy

Model	Coverage	Error Rate	Error Rate	
Model		on covered text		
Word based	29/65	0.042	0.664	
Word-based hybrid training	29/65	0.029	0.659	
Phoneme based	63/65	0.583	0.611	
Phoneme-phrase based	63/65	0.136	0.194	
Hybrid training/decoding	63/65	0.115	0.175	

Experiments: Human Dictation Accuracy

Model	Error Rate
Model	vs. reference English
Dictation from Reference Chinglish	0.477
Phoneme based	0.696
Hybrid training and decoding	0.496

Experiments: No Human in the Loop

Model	Error Rate	
Model	vs. reference English	
Word based	0.925	
Word-based hybrid training	0.925	
Phoneme based	0.937	
Phoneme-phrase based	0.896	
Hybrid training and decoding	0.898	

Shi, X., Knight, K. and Ji, H. (USC & RPI)

How to Speak a Language

Conclusion

- Goal: Help people speak foreign languages
 - Provide native phonetic spellings that approximate the sounds of foreign phrases
 - Use a cascade of FSTs
 - Improve the model by adding phrases and combining models in both training and decoding phase

For future:

More Language Pairs

Thank you! & QA

Demo: http:\\cage.isi.edu:8080

Shi, X., Knight, K. and Ji, H. (USC & RPI)

How to Speak a Language

June 24, 2014 31 / 31